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Abstract. We develop a method of classifying LU equivalent classes of symmetric N -qubit mixed states
based on multiaxial representation [1] of the density matrix. Bastin et.al [2] have defined two parameters,
diversity degree and degeneracy configuration, to characterize symmetric N -qubit pure states using Majo-
rana construction. This method can not be employed for symmetric mixed state classification. therefore
we propose a more general method of LU classification for pure as well as mixed states based on the el-
egant multiaxial representation of the density matrix. In our scheme of classification, we introduce three
parameters namely, diversity degree, degeneracy configuration, rank of the spherical tensor parameters
which characterize the density matrix. The power of our method is demonstrated using several well known
examples of symmetric two, three qubit pure states and two qubit mixed states. A recipe to identify the
most general symmetric N -qubit pure separable state is also given.
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1 Introduction

Local unitary (LU) equivalence of multipartite pure
states has received a lot of attention recently [3-6]. ρ
and ρ′ are said to be LU equivalent if ρ′ = UρU† where
U ∈ SU(2)×N . Local Operation and Classical Commu-
nication (LOCC) equivalent classes are defined such that
all quantum states within the same class can be trans-
formed to each other by LU transformation. [3]. It is
well known that the states belonging to the same LU
equivalent class can be used for similar quantum infor-
mation processing tasks as they possess the same amount
of entanglement. One way of classifying these states is
by evaluating the LU invariants. Well known algebraic
methods for generation of invariants already exist in lit-
erature [7-10]. As the number of subsystems increases,
the problem of identifying and interpreting the indepen-
dent invariants rapidly becomes very complicated. How-
ever, LU invariants associated with the symmetric states,
which are experimentally viable and mathematically el-
egant, are easier to handle as the dimensionality of the
Hilbert space involved is much less. Because of the per-
mutational symmetry involved in the symmetric state,
ρ and ρ′ are said to belong to the same LU equivalent
class if ρ′ = R ⊗ R ⊗ R...R ρR−1 ⊗ R−1...R−1 where R
represents the rotation operator on a qubit [11]. Differ-
ent LU equivalent classes of up to 5 pure qubit states
and for certain mixed states have been determined by
introducing the standard form for multipartite states [4,
5]. LU invariants of the most general symmetric mixed
systems have been constructed using the elegant multi-
axial representation of the symmetric states [12]. But
entanglement classification of mixed state under local
transformation poses a difficult problem as the defini-
tion of mixed state entanglement itself is poorly under-
stood. However, an operational entanglement classifica-
tion of symmetric mixed state for an arbitrary number
of qubits under Stochastic Local Operation and Classical
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Communication (SLOCC) has been introduced by Bastin
et. al[13]. In this paper we propose a scheme for classi-
fying the most general symmetric N-qubit mixed states
under LU transformation based on the multi-axial repre-
sentation of Ramachandran and Ravishankar [1].

Set of N -qubit pure states that remain unchanged by
permutations of individual particles are called symmet-
ric states. Symmetric states offer elegant mathematical
analysis as the dimension of the Hilbert space reduces
drastically from 2N to (N + 1), when N -qubits respect
exchange symmetry. Such a Hilbert space is considered to
be spanned by the eigen states {|j,m〉;−j ≤ m ≤ +j} of
angular momentum operators J2 and Jz , where j = N

2 .
Fortunately, a large number of experimentally relevant
states [14] possesses symmetry under particle exchange
and this property allows us to significantly reduce the
computational complexity.

2 Multiaxial Representation of Density
Matrix

The standard expression for the most general spin-j
density matrix or symmetric N -qubit density matrix in
terms of Fano statistical tensor parameters tkq

′s is given
by [15]

ρ( ~J) =
Tr(ρ)

(2j + 1)

2j∑
k=0

+k∑
q=−k

tkq τ
k†

q ( ~J) , (1)

where ~J is the angular momentum operator with com-
ponents ~Jx, ~Jy, ~Jz and τkq

′s (with τ00 = I ,the identity
operator) are irreducible tensor operators of rank k in
the 2j+1 dimensional spin space with projection q along
the axis of quantization in the real 3-dimensional space.
The spherical tensor parameters tkq

′s are the average ex-

pectation values tkq = Tr(ρ τkq ). Since ρ is Hermitian and

τk
†

q = (−1)qτk−q, complex conjugate of tkq
′s satisfy the

condition
tk
∗

q = (−1)q tk−q . (2)



It has been shown by Ramachandran and Ravis-
hankar[1] that any spherical tensor tkq of rank k can
be represented geometrically by a set of k vectors
{Q̂(θi, ϕi)}; i = 1, ..., k on the surface of a sphere of ra-
dius rk. As the state of spin- j assembly is characterized
by 2j spherical tensors, the state can be represented ge-
ometrically by a set of 2j spheres of radii r1, r2, ..., r2j
having 1, 2, ..., 2j vectors specified on its surface, respec-
tively. Thus, the spin-j system is in general characterized
by j(2j + 1) axes and 2j scalars. Since scalar product
between any two vectors Q̂(θi, ϕi) and Q̂(θj , ϕj) is an
invariant under rotation, a spin-j or symmetric N -qubit

density matrix is characterised by C
j(2j+1)
2 +2j invariants

[12] where C
j(2j+1)
2 denotes the binomial coefficient.

3 LU classification

A symmetric N -qubit pure state is given by

|ψ〉 = N
∑

1≤i1 6=... 6=iN≤N

|εi1 ...εiN 〉 (3)

where N is a normalization factor and the |εi〉 ′s are sin-
gle qubit states |εi〉 = αi|1〉+βi|0〉 with |αi|2 + |βi|2 = 1.
According to Bastin et. al, [2], one needs two parameters
namely diversity degree d and degeneracy configuration
D{ni} for state classification based on Majorana repre-
sentation. For example, a symmetric N -qubit state with
all εi identical has a degeneracy configuration DN and a
diversity degree d of 1. If all but one εi are identical, we
get the configuration DN−1,1 and d = 2. If all but two εi
are identical, we get the configuration DN−2,2(d = 2) or
DN−2,1,1(d = 3), depending on whether the two remain-
ing ones are identical or not, respectively. This classifica-
tion is applicable for symmetric pure states only. Here we
propose a scheme for classification of both pure as well
as mixed symmetric states based on multiaxial represen-
tation. In our scheme, every tk is characterised by three
parameters namely, diversity degree, degeneracy config-
uration and rank of the spherical tensor tk. For example,
in the case of a symmetric two qubit mixed state, the
density matrix is characterized by t1q and t2q. In the case
of t1, there is only one axis. Thus t1 ∈ D1

1. In the case
of t2, there are two axes in general. If the two axes are
identical then t2 ∈ D2

2 and if the axes are not collinear
then t2 ∈ D2

1,1. Thus the two qubit system belongs to
one of the following classes.
(i) {D1

1} −→ ρ is pure vector polarized.
(ii) {D2

2} −→ ρ is pure tensor polarized.
(iii) {D1

1,D2
2} −→ ρ is oriented.

(iv) {D1
1,D2

1,1} −→ ρ is triaxial and non-oriented.
Similarly, a symmetric three qubit mixed system is

characterized by t1, t2 and t3. Thus the spherical ten-
sor parameters of the spin-3/2 or symmetric three qubit
density matrix belong to the following configurations.
(i) t1 ∈ D1

1.
(ii) t2 ∈ D2

2 or t2 ∈ D2
1,1.

(iii) t3 ∈ D3
3 or t3 ∈ D3

2,1 or t3 ∈ D3
1,1,1.

Observe that two density matrices ρ and ρ′ are said to
be LU equivalent if they posses the same set of invari-
ants. Thus, in our scheme of classification it is obvious

that every spherical tensor of a given rank k character-
ising ρ and ρ′ should have the same degeneracy configu-
ration and diversity degree in order to posses the same
number of invariants. For example, a symmetric two
qubit density matrix having the degeneracy configura-
tion {D1

1,D2
2} is not LU equivalent to another symmetric

two qubit density matrix with degeneracy configuration
{D1

1,D2
1,1} since they posses different set of invariants.

Employing the above classification scheme, a recipe for
identifying N -qubit pure separable state is discussed in
detail. Some well known examples of symmetric two and
three qubit pure states are also investigated. Classifi-
cation of uniaxial, biaxial and triaxial two qubit mixed
states which can be produced in the laboratory is illus-
trated.
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